Rainer Olzem - arge-geologie.de

Die Überwachung von Vulkanen - Vorhersage von Vulkanausbrüchen

Ausbruch des Mount Saint Helens, Washington/USA am 18. Mai 1980

Vulkanausbrüche mit katastrophalen Folgen sind, statistisch gesehen, sehr selten. In ihrer Häufigkeit liegen sie zusammen mit Erdbeben nur auf Platz 5 der Hitliste der Naturkatastrophen, die häufigsten sind Waldbrände, Überschwemmungen, Seestürme und Heuschreckenplagen.

Bei der Überwachung von Vulkanen stehen generell fünf Überwachungsmethoden zur Verfügung, die je nach Vulkan-Charakteristik in unterschiedlicher Kombination eingesetzt werden:

- die Aufzeichnung seismischer Aktivität
- die geodätische Überwachung der Topographie,
- die Messung gravimetrischer und magnetometrischer Veränderungen,
- die Erfassung von oberflächennahen Temperaturerhöhungen und
- die chemische Analyse aufsteigender vulkanischer Gase.

Aufzeichnung seismischer Aktivität

Das Innere einer seismischen Station auf Stromboli (www.swisseduc.ch)

Ein Eruptionsprozess wird zunächst vom Aufstieg des Magmas eingeleitet. Wenn das Magma auf vorgezeichneten oder neuen Bruchlinien, Spalten oder Rissen zur Erdoberfläche emporsteigt, entstehen durch Spannungen im Umgebungsgestein und durch Entgasungsprozesse des Magmas charakteristische seismische Signale. Gestein zerbricht dabei und Risse beginnen zu vibrieren. Die Zerstörung von Gestein löst Erdbeben mit hoher Frequenz aus, die Bewegung der Risse dagegen führt zu niedrig frequenten Beben, dem so genannten Tremor.

Um Tiefe und Herd der vulkanischen Beben zu ermitteln, wird in der Regel ein Netz von äußerst empfindlichen Seismometern rund um den Vulkan eingerichtet. Denn gerade die schwachen Erdbeben, die eine Stärke von weniger als 1 haben, sind häufig Anzeichen dafür, dass ein Vulkan aktiv wird. Zum Beispiel wurden am betroffenen Südwesthang des Ätna in den 12 Stunden vor dem 1981er Ausbruch etwa 2.800 kleinere Erdstöße durch die vor Ort installierten Seismometer als Tremor registriert. Über ein automatisches Übertragungssystem wurden die Daten direkt zum Istituto Nazionale di Vulcanologia in Catania weitergeleitet. Mit Hilfe moderner Technik werden Veränderungen der seismischen Aktivität heute in Echtzeit ermittelt. Strukturen und Vorgänge unter der Erdoberfläche können damit unmittelbar und exakt dargestellt und analysiert werden.

Geodätische Überwachung

Interferogramm mit Geländehebungen an den Three Sisters/Oregon (USGS - VHP InSAR Research Group)

Dringt Magma aus der Tiefe nach oben, so können in bestimmten Bereichen des Vulkans Deformationen der Erdoberfläche in Form von Aufbeulungen, Absenkungen, Neigungen, Buckeln und Rissen entstehen. Diese Deformationen können mit meist in Bohrlöchern des Gesteins fest installierten Neigungsmessern (Klinometern) und Dehnungsmessern (Extensiometern) vor Ort gemessen werden. Diese Phänomene können aber auch schon mit einfachen Mitteln wie zum Beispiel mit einem Bandmaß oder durch aufgesprühte Linien erkannt werden.

Anfang August 1982 hatten Geologen im Kraterboden des Mount St. Helens viele schmale Bodenrisse entdeckt und sie mit Farblinien markiert. Zwei Tage später bereits waren die Linien deutlich gekrümmt, was eine Veränderung der Risse durch aufsteigendes Magma anzeigte. Wenige Tage später kam es zu einer heftigen Eruption des Vulkans. Im Oktober 2004 wurde am Mount St. Helens eine Aufbeulung einer Vulkanflanke von mehr als 100 m beobachtet, die auch mit bloßem Auge sichtbar war.

Eine komplexere und exaktere Methode zur Erfassung morphologischer Veränderungen ist zum Beispiel die Messung horizontaler Entfernungen mit Electronic-Distance-Meters (EDM). Ein EDM kann elektromagnetische Signale senden und empfangen. Die Wellenphase verschiebt sich dabei in Abhängigkeit von der Entfernung zwischen EDM und reflektierendem Objekt und gibt damit das Ausmaß der entstandenen Verschiebung an. EDMs haben Reichweiten bis zu 50 km und hohe Messgenauigkeiten von wenigen Millimetern. Oberflächenveränderungen vor allem größerer Gebiete und abgelegener Vulkane werden mit Hilfe von satellitengestützten geodätischen Messverfahren beobachtet.

Da sich in Folge von Deformationen des Geländes auch Grundwasser- und Oberflächenwasserstände relativ zu einander verändern können, werden oft Grundwassermessstellen eingerichtet und in gewässernahen Gebieten Fluss- und Seewasserpegel installiert.

Messung gravimetrischer und magnetometrischer Veränderungen

Magnetometer (wikimedia)

Dringen heiße Gesteinsschmelzen in oberflächennahe Erdschichten, so werden lokale Veränderungen im Schwerefeld beobachtet. Diese örtlichen Veränderungen werden durch Dichteunterschiede zwischen Magma und Umgebungsgestein verursacht.

Solche so genannten mikrogravimetrischen Anomalien lassen sich mit Hilfe von hoch empfindlichen Gravimetern entdecken, die an aktiven Vulkanen zum Einsatz kommen.

Beim Magma-Aufstieg können auch lokale Änderungen des Magnetfeldes registriert werden, die durch thermische Einwirkungen verursacht werden. Bereits 1981 wurden am Südhang des Ätna und in etwa 20 km Entfernung zum Ätna zwei magnetometrische Stationen mit automatischer Daten-Fernübertragung in Betrieb genommen.

Erfassung von Temperaturerhöhungen

Nächtliche IR-Aufnahme des Vulkans Chilique/Chile mit Hotspots im Kraterinneren und an den Flanken (Uni München, Meteorologisches Institut)

Der Aufstieg des etwa 1.200 °C heißen Magmas aus einer Magmakammer oder direkt aus dem oberen Erdmantel geht in erster Linie mit einer lokalen Temperaturerhöhung des Nebengesteins einher.

Mit Hilfe ortsfester Stationen zur Temperaturmessung und durch Infrarot-Aufnahmen von Satelliten aus können solche thermischen Aufheizungen festgestellt werden, die durch oberflächennahe Stauung aufgedrungener Schmelzen entstehen.

Analyse aufsteigender Gase

Probenahme von vulkanischen Gasen (Helmholtz Zentrum für Umweltforschung - www.ufz.de)

Eruptive Gase sind die Haupttriebkraft der vulkanischen Aktivität. Änderungen ihrer Menge, ihrer Temperatur und ihrer chemischen Zusammensetzung sind für die Vorhersage eines Vulkanausbruchs von grundlegender Bedeutung. Generell sind die Schwankungen im Chemismus der Gase um so höher, je heißer die Gase sind und je reger die vulkanische Aktivität ist. Bei hohem Gasausstoß lässt sich die Konzentration gewisser Gase mit Hilfe ihres Absorptionsspektrums im sichtbaren Licht auch durch Fernerkundung bestimmen.

Die geochemische Überwachung erstreckt sich auch auf die Beobachtung von Grundwasser und von Quellen. Denn unterirdisches Wasser wird oft von vulkanischen Gasen kontaminiert, die dem Magma entweichen und sich im Boden ausbreiten.

Im Rahmen der internationalen Dekade zur Schadensminimierung bei Naturkatastrophen (1990-2000) wurden 15 Vulkane weltweit als Forschungsobjekte ausgewählt und kontinuierlich überwacht, darunter auch der Vesuv und der Ätna.

Trotz der Vielzahl der Frühwarnsysteme und vieler neuer Erkenntnisse auf diesem Gebiet wird sich bei Vulkanausbrüchen eine gewisse Unberechenbarkeit nie ausschalten lassen. Parallel zur Vorhersage gefährlicher Eruptionen sind Schutzmaßnahmen, Risiko- und Handlungspläne, Aufklärung der betroffenen Bevölkerung und gesetzliche Regelungen für den Ernstfall notwendig.

Nach oben